Saturday, May 26, 2012

Vacuum tubes could revolutionize computer chips?

No, I'm fairly sure I haven't lost my mind ... that really is the right headline.

According to a resent paper published in the American Institute of Physics, nanoscale vacuum "tubes" manufactured using conventional chip making techniques have operated at frequencies as high as .46 THz.

Dr. Meyya Meyyappan, Director at the Center for Nanotechnology at the NASA Ames Research Center, has highlighted the advantages of nanoscale vacuum devices which include resistance to hard radiation and significantly improved operating frequencies.

The increased operating frequency comes about because of the speed at which electrons travel through different materials. The speed of electron travel through silicon is comparatively slow, through graphine it is approximately 100 times faster and through a vacuum it approaches the speed of light.

While the cavity is not technically a vacuum it contains so few atoms of any other material, such as oxygen, it is functionally the same. This also gives the vacuum nanoscale device an advantage in space where hard radiation can disrupt an electron's travel through silicon leading to errors or sometimes permanent failure.

Dr Meyyappan estimates that vacuum nanoscale components will run ten times faster than the best conventional silicon chips and who knows what advances the future will hold. Faster chips will aid in signal processing and more capable software defined radios.

Do you want to monitor every CW & PSK31 transmission on the 40M band at once? With a vacuum "tube" rig you may be able to!

Sunday, May 13, 2012

Hollow state decade counter.

If you have looked through my blog you'll know that I have a soft spot for tubes and tube technology. At a time when our understanding of electron mechanics and quantum theory was still in development the manufacture of advanced vacuum tubes was part science, part physics and part art.
Special purpose tubes were developed in their thousands to meet the needs of commercial, scientific and industrial applications. Their form and functions were as varied as the devices they were installed in. Sometimes tubes were developed to meet a specific need and sometimes new tubes were developed for applications not yet in existence.
The E1T tube is impressive even among special purpose tubes. It functions as a decade counter with an inbuilt display! Many years later it would take several chips and associated display circuitry to achieve the same result using solid state components.
This is a somewhat long introduction to the excellent article by Ronald Dekker on the people and the story surrounding the development of vacuum tubes technology in Holland and the E1T tube in particular.
If you have a moment take a look at The making of the E1T by Ronald Dekker and revisit a time when electronics, physics and art were brought together to create 'technology for a better tomorrow".